
Our basic developer implementation guide for client-side A/B tests

This doc assumes you have some basic technical knowledge of how to implement an
A/B test including some common coding practices.

Polling

A/B testing 101! It’s common in an A/B test to interact with and mutate lots of elements
on a page, make sure you are polling for every element before you reference them. It’s a
good idea to create a separate trigger dependency where all elements are polled first
before making changes to the page. This will also ensure a test will “fail gracefully“, to
protect against future releases where core elements of the page may change.

DOM mutations and selectors

● Always be very specific with selectors, and always try to use container selectors
when targeting an element. E.g. try to avoid using .target-element and
consider using .container-element .target-element instead.

● If there aren’t specific class names, consider using data attributes.

● For modern frameworks such as MUI, it’s sometimes common for class names
to be auto-generated at build time, this can cause an issue when selecting
elements and class names might change in future releases. If this is the case,
consider syncing with product dev teams and requesting them to add static



classes to DOM elements specifically for use in experiments (this is a also
common practice for e2e testing tools such as Cypress)

Mutation observers

● Mutation observers are used to apply a desired effect after the DOM has
changed, common scenarios include applying a change after a page re-renders
or applying code later to a page after a certain element renders into view.

○ It’s generally best to avoid using mutation observers where possible,
consider using alternative methods such as AJAX complete if the
situation allows for it.

○ Ensure your observer callback is optimised for efficiency and triggers the
minimum number of times necessary. This can be done by adding in extra
checks within the callback itself or passing a config as shown below to
minimise the number of executions.

○ Always add safety checks to your callbacks, it’s always a good idea to run
a simple URL path check before you run your change, this is because
observers can continue to fire if left unchecked, especially on SPAs where
the observer may stay connected across pages:



Running tests across pages

● It’s common for A/B tests to run across multiple pages where custom
configuration is needed per page. Test logic can get convoluted in these
scenarios, for complex tests, it’s always a good idea to have separate polling
conditions per page and have page logic self- contained to ensure code is
readable and clean:



Tests depending on other winning tests

● It’s a bad idea to have an A/B test depending on another live test. Suppose you
have a winning test running at 100% that adds a new sitewide navigation and you
want to run an iteration on the newly created navigation in a future test. In this
scenario, it’s easy to build a new test that references the new navigation, but that
will create a dependency on the winning test. If the winning test is paused or
modified then your new test is also vulnerable to breaking. This is a relatively
simple example, but this can get complex with lots of tests depending on each
other and also creates problems with test execution order. In our navigation
iteration scenario, the best thing to do is as follows:

○ Pause the 100% winning test

○ Copy the code from the 100% winning test into your new test so that the
code runs on control and variation. In most platforms there is an option to
run control code, in others, you may need to physically create a new
variant named “control“ .

○ Rather than running your new iteration changes on top of the previous
code, it’s best to directly modify the code itself in the variation to prevent
execution order problems.

This method keeps the execution order clean and removes test dependency.

Continuous development integration for client-side tests

Deploying A/B tests to a platform does not normally require a standard CI/CD
automation process as the test code lives separately from the product code in an A/B
testing platform. That being said we highly recommend implementing the following
practices:

● Source control your tests and push them to a repo that acts as a reference for all
A/B tests. This makes it very easy to update existing tests and keep track of
code.



● We do not recommend coding A/B tests directly into the platform as part of the
build process. We recommend using your code editor with a transpiler like
Webpack or Rollup so you can make use of modern JavaScript. Code should then
be bundled into the platform before launch which should also account for
browser coverage.

● We recommend having a main branch that acts as the single source of truth for
experiments; new tests in development should have their own branch before
merging into the main branch.

● We recommend having code peer-reviewed just like any other standard
development process.

Quality Assurance (QA)

Quality Assurance (QA) in the context of AB experimentation is a critical process that
ensures the reliability, accuracy, and overall effectiveness of the tests before they are
deployed to your customers. QA involves a meticulous examination of various elements
within the AB test. By rigorously testing each variant and validating the experiment's
functionality, you will aim to identify and address any potential issues or anomalies that
could compromise the integrity of the test results. This proactive approach not only
safeguards against errors but also enhances confidence in the outcomes, ultimately
allowing you to make informed decisions based on reliable data.

Below are some top tips when going through the QA process.

Test Scripts & Scenarios

One crucial aspect of the QA process involves the creation and execution of
comprehensive tests scripts. Test scripts serve as detailed guidelines for systematically
assessing the functionality and performance of each variant in an AB test. These scripts
outline specific scenarios and user interactions that need to be tested, ensuring a
thorough examination of the experiment under various conditions. By crafting test
scripts, you can simulate user journeys allowing you to identify potential issues before
the test goes live.



This process is particularly important in scenarios where changes in functionality may
impact the results of the experiment. Through rigorous testing of these scripts, you can
uncover any unintended consequences and address them proactively.

Metrics

Before initiating the QA process, it is imperative to review the metrics and set up of the
AB test within the platform. This pre-emptive check serves a critical role to ensure that
the experiment aligns with its intended goal and accurately captures the relevant
metrics for analysis. This check involves validation of the tracking mechanisms,
conversion events and KPIs defined for the test. Verifying the correctness of the metric
implementation helps to avoid skewed or inaccurate data, ensuring the reliability of the
insights from the experiment.

Emulation vs. Real Devices

Emulated devices offer the advantage of cost effectiveness and the ability to simulate a
wide range of device configurations, enabling you to cover a broader spectrum of
potential user scenarios, along with the ability to automate the QA process. However,
emulators may not fully replicate the nuances of real world device behaviour, leading to
potential blind spots in testing. Striking a balance between emulated and real device
testing is crucial to achieving comprehensive QA coverage, reducing the likelihood of
overlooking issues that might only appear on real devices.

Live QA

Once the AB test is live, completing a thorough QA run through becomes an integral part
of the QA process. This final stage is designed to validate that all components continue
to function as intended.



Protecting A/B tests against releases

● Before an A/B test goes live to production, make sure to target the test to lower
environments too (for example UAT or STAGING), this is to make sure the A/B
test is fully QA’d with up-and-coming releases. QA testers should always test
releases against live A/B tests and they should be able to force bucket into a
variation within the test environment.

● Ensure that all live tests are documented internally and that other product teams
are aware of what is going live.

● Implement fail-safe strategies into your test code; when live tests are running in
the platform it’s a common problem where a test may cause a JavaScript error
due to a particular DOM element being removed in a release. Ensure that a test
“fails gracefully” , by making use of try-catch blocks and implementing a polling
trigger that polls for all DOM elements being referenced.

Pre-launch checklist

Fail-safe code - have you implemented polling to check for the presence of all
DOM elements that you are modifying in the test?
Has the developer done their own sanity check across a few different browsers
and devices?
Has your code been reviewed by another developer?
Has the test been QA’d by a dedicated tester?
Has the test been exposed to lower test environments to protect against future
releases?
If you have a dedicated testing team, are they aware of the test about to be
deployed?
Have you documented that your test is going live so other teams are aware?
Is your test “self-contained” and not depending on other winning tests that are
live in the testing platform?


